/*增幅降幅排名*/
复制代码 代码如下:
Select top 50 UserName,sum(ReceivePrice) - sum(GuessPrice) as ReceivePrice,
cast(sum(CASE WHEN ReceivePrice>0 THEN 1.0 ELSE 0 END) / count(ReceivePrice) * 100 as numeric(4,1)) as Rate
From [game_FantasyLog]
WHERE IsJudge=1
GROUP BY UserId,UserName
ORDER BY sum(ReceivePrice) - sum(GuessPrice) ASC
/*正确率错误率排名*/
复制代码 代码如下:
Select top 50 UserName,sum(ReceivePrice) - sum(GuessPrice) as ReceivePrice,
cast(sum(CASE WHEN ReceivePrice>0 THEN 1.0 ELSE 0 END) / count(ReceivePrice) * 100 as numeric(4,1)) as Rate
From [game_FantasyLog]
WHERE IsJudge=1
GROUP BY UserId,UserName Having count(UserId) >= 5
ORDER BY cast(sum(CASE WHEN ReceivePrice>0 THEN 1.0 ELSE 0 END) / count(ReceivePrice) * 100 as numeric(4,1)) ASC
/*大手笔排名*/
复制代码 代码如下:
Select top 50 l.UserName,sum(l.GuessPrice),sum(l.ReceivePrice),f.title
From [game_FantasyLog] l left join [game_fantasy] f on l.topicid = f.id
GROUP BY l.TopicId,l.UserName,f.title
ORDER BY sum(l.GuessPrice) DESC
/*冷门场次排名*/
复制代码 代码如下:
Select top 50 f.id,f.title,f.GuessPrice,(select sum(receivePrice) FROM [game_FantasyLog] l where l.topicid = f.id),
cast((select sum(CASE WHEN ReceivePrice>0 THEN 1.0 ELSE 0 END) / f.GuessTimes FROM [game_FantasyLog] l2 where l2.topicid = f.id) as numeric(4,2))
From [game_Fantasy] f WHERE f.GuessPrice > 1000
ORDER BY (select sum(receivePrice) FROM [game_FantasyLog] l where l.topicid = f.id) ASC
/*冷门场次的命中者*/
复制代码 代码如下:
Select top 50 UserName,sum(ReceivePrice) as ReceivePrice
From [game_FantasyLog] where topicid=29
GROUP BY TopicId,UserName
ORDER BY sum(ReceivePrice) DESC
复制代码 代码如下:
Select top 50 UserName,sum(ReceivePrice) - sum(GuessPrice) as ReceivePrice,
cast(sum(CASE WHEN ReceivePrice>0 THEN 1.0 ELSE 0 END) / count(ReceivePrice) * 100 as numeric(4,1)) as Rate
From [game_FantasyLog]
WHERE IsJudge=1
GROUP BY UserId,UserName
ORDER BY sum(ReceivePrice) - sum(GuessPrice) ASC
/*正确率错误率排名*/
复制代码 代码如下:
Select top 50 UserName,sum(ReceivePrice) - sum(GuessPrice) as ReceivePrice,
cast(sum(CASE WHEN ReceivePrice>0 THEN 1.0 ELSE 0 END) / count(ReceivePrice) * 100 as numeric(4,1)) as Rate
From [game_FantasyLog]
WHERE IsJudge=1
GROUP BY UserId,UserName Having count(UserId) >= 5
ORDER BY cast(sum(CASE WHEN ReceivePrice>0 THEN 1.0 ELSE 0 END) / count(ReceivePrice) * 100 as numeric(4,1)) ASC
/*大手笔排名*/
复制代码 代码如下:
Select top 50 l.UserName,sum(l.GuessPrice),sum(l.ReceivePrice),f.title
From [game_FantasyLog] l left join [game_fantasy] f on l.topicid = f.id
GROUP BY l.TopicId,l.UserName,f.title
ORDER BY sum(l.GuessPrice) DESC
/*冷门场次排名*/
复制代码 代码如下:
Select top 50 f.id,f.title,f.GuessPrice,(select sum(receivePrice) FROM [game_FantasyLog] l where l.topicid = f.id),
cast((select sum(CASE WHEN ReceivePrice>0 THEN 1.0 ELSE 0 END) / f.GuessTimes FROM [game_FantasyLog] l2 where l2.topicid = f.id) as numeric(4,2))
From [game_Fantasy] f WHERE f.GuessPrice > 1000
ORDER BY (select sum(receivePrice) FROM [game_FantasyLog] l where l.topicid = f.id) ASC
/*冷门场次的命中者*/
复制代码 代码如下:
Select top 50 UserName,sum(ReceivePrice) as ReceivePrice
From [game_FantasyLog] where topicid=29
GROUP BY TopicId,UserName
ORDER BY sum(ReceivePrice) DESC
标签:
榜单,SQL语句
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
千金楼资源网 Copyright www.htabc.com
暂无“世界杯猜想活动的各类榜单的SQL语句小结”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年01月11日
2025年01月11日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]